Math 214 - Final American University of Beyrouth Fall 2017 - Dr. Richard Aoun

Exercise 1. Let X and Y be two topological spaces and $f : X \longrightarrow Y$ a map. Show that if X is compact and f is continuous on X, then f(X) is compact (when endowed with the subspace topology).

Exercise 2. Parts 1,2 and 3 are mutually independent.

We endow \mathbb{R} and \mathbb{R}^2 with the Euclidean topology and their respective subsets with the subspace topology. Recall that \mathbf{S}^1 denotes the unit circle in \mathbb{R}^2 , i.e. the sphere of center the origin and radius 1 for the Euclidean metric.

- 1. Let X and Y be two topological spaces. Assume X to be compact and Y to be Hausdorff.
 - (a) Show that any continuous map $f: X \longrightarrow Y$ is a closed map.
 - (b) Deduce that any continuous injection from X into Y is an embedding, i.e. yields a homeomorphism between X and f(X).
- 2. Let $f : \mathbf{S}^1 \longrightarrow \mathbb{R}$ be a continuous map. Explain why there exists two real numbers $a \leq b$ such that $f(\mathbf{S}^1) = [a, b]$.
- 3. Show that there is no homeomorphism between \mathbf{S}^1 and any closed and bounded interval [a, b].
- 4. Deduce from the previous question **S** that there is no continuous injection from S^1 into \mathbb{R} .

Exercise 3. Let (X, d) be a metric space.

- 1. Show that a Cauchy sequence in (X, d) that admits a convergent subsequence is actually convergent.
- 2. Suppose that there exists some $r_0 > 0$ such that every open ball in (X, d) of radius r_0 has compact closure. Show that (X, d) is complete.
- 3. Suppose that for each $x \in X$, there is an r = r(x) > 0 such that the open ball B(x, r) has compact closure. Show by means of an example that X need not be complete. Check very quickly the properties you are claiming about your spaces.

Exercise 4. In this exercise we adopt the following definition of countability: A countable set is a set that is in bijection with a subset of \mathbb{N} . Equivalently, it is either a finite set or an infinite one but in bijection with \mathbb{N} . You can use without any proof that a countable union (in particular a finite one) of countable sets is still countable.

Prove that any compact metric space is separable, i.e. contains a countable dense subset.

Exercise 5. (Arzelà-Ascoli Theorem)

Our goal is to prove and discuss a weak form of Arzelà-Ascoli's Theorem, which is an important result in functional analysis. Our setting is a compact metric space (X, d_X) . Denote by $\mathcal{C}(X)$ the set of all continuous functions from X to \mathbb{R} . We consider the sup-norm

$$d_{\infty}(f,g) = \sup\{|f(x) - g(x)|; x \in X\}.$$

The aforementioned theorem (see Question 5 for the statement) gives a criteria for a subset of $\mathcal{C}(X)$ to be compact. Other than boundness and being closed, an additional assumption should be imposed: that of *equicontinuity* of a family of continuous functions on X.

- 1. Explain why d_{∞} is well-defined and that the "sup" in its definition can be replaced by a "max". No need to check that it is indeed a metric on $\mathcal{C}(X)$.
- 2. <u>Definition</u>: A subset $\mathcal{F} \subseteq \mathcal{C}(X)$ is said to be *equicontinuous* if for every $\epsilon > 0$ there exists $\delta = \delta(\epsilon) > 0$ such that for every $f \in \mathcal{F}$ and for every $x, y \in X$,

$$d_X(x,y) < \delta \Longrightarrow |f(x) - f(y)| < \epsilon.$$

(a) Explain why if \mathcal{F} is a singleton, i.e. $\mathcal{F} = \{f_0\}$ for some continuous function $f_0 : X \longrightarrow \mathbb{R}$, then \mathcal{F} is equicontinuous.

In the questions (b), (c) and (d) below, we take X = [0, 1].

- (b) Check that, for every C > 0, the set \mathcal{F}_C of differentiable functions f on [0, 1] such that $\sup_{0 \le x \le 1} |f'(x)| \le C$ is equicontinuous.
- (c) Show that $\mathcal{F} := \{x \mapsto \sin(nx); n \in \mathbb{N}\}$ is a subset of $\mathcal{C}([0,1])$ which is not equicontinuous. Is the set $\bigcup_{C>0} \mathcal{F}_C$ of differentiable functions on [0,1] with bounded derivative equicontinuous?

Beside a rigorous proof, draw a picture and explain briefly what is happening.

- (d) Denote by 0 the constant function x → 0 on [0, 1]. Show that the closed ball of center 0 and radius 1 in (C([0, 1], d_∞) is not equicontinuous.
 Beside a rigorous proof, draw a picture and explain briefly what is happening.
- 3. Show that, if a subset \mathcal{F} of $\mathcal{C}(X)$ is compact, then \mathcal{F} is necessarily equicontinuous.
- 4. ** Let $\mathcal{F} \subseteq \mathcal{C}(X)$. Show that if \mathcal{F} is **bounded** for the metric d_{∞} and **equicontinuous**, then \mathcal{F} is totally bounded¹.
- 5. We <u>admit</u> the following criteria of compactness: "a metric space is compact if and only if it is totally bounded and complete". Deduce from the previous questions Arzelà-Ascoli's theorem:

 $\mathcal{F} \subset \mathcal{C}(X)$ is compact $\iff \mathcal{F}$ is closed, bounded and equicontinuous.

6. BONUS; BUT WILL BE COUNTED ONLY IF QUESTION 4 IS TREATED. Let $n \in \mathbb{N}^*$. Show that Heine-Borel's theorem in \mathbb{R}^n can be deduce from Arzelà-Ascoli's theorem, by choosing a suitable compact metric space X.

¹Recall that if A is a subset of a metric space (Y, ρ) , then A is said to be totally bounded, if for every $\epsilon > 0$ one can find finitely many points $a_1, \dots, a_r \in A$ (that depend on ϵ) such that $A \subseteq \bigcup_{i=1}^r B(a_i, \epsilon)$.